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Research Question = = aaniasad

To what extent do the Spotify audio
features ‘danceability’ and ‘energy’
predict a song’'s commercial
success?



AGENDA O FRESENIUS

IIIIIIIIIIIIIIIIIIIIIIIIIII

Spotify in a Data Sources +
Business context Challenges

Exploratory Data
Analysis

Next Steps

Limitations (final Report)
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Spotify relevance in a Business context

User Data
Postgres DB

User Click
Data

Data Processing
Pipeline

Featurization

User

Feature 1

Feature 2

Feature 3

Feature n

API| Endpoint
ML Save
Training User-item

Matrix

https://www.tryexponent.com/courses/ml-system-

design/design-spotify-recommendation-system
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Spotify - . El

API] Kaggle Listen MusicBrainz Charts
Dataset Notes API Website

[ A ]

Useful additional { Good overview of real

x Problem: A track ID is required for every single x Python Code Used only for general ( data ( genre, release chart data
song — extremely time-consuming overview, not , year)
suitable for analysis
Inconsistent data X no audio features —
quality not usable for
analysis

x Tokens expire every 60 minutes —> APl repeatedly o . .
stops working Originally available only in
Python — had to be converted
to R & Quarto for our project

Conclusion: APl unsuitable for large datasets



Distribution of Spotify Audio Features

e Many features are skewed — strong
clustering

e Energy & danceability show wide variation

e Popularity is widely spread — good for
prediction analysis

[ Kaggle ]—»[ Fvinon ]—P{RStudio i—»{ tidyverse }_,[ “ggplot2 ]
code preprocessing visualizations

> features_long <- spotify %>%

select(popularity, danceability, energy, loudness, speechiness,

acousticness, liveness, valence, tempo) %>%

+ pivot_longer(cols = everythingQ,
+ names_to = "feature”,
+ values_to = "value”)

> > ggplot(features_long, aes(x = value)) +
geom_histogram(bins = 3@, fill = "skyblue”, color = "white”) +

+ facet_wrap(~ feature, scales = "free”) +
+ theme_minimal () +
+ labs(title = "Feature Distribution”)

Feature Distribution
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Correlation between Spotify Audio Features and Popularity rresenius
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e Energy shows the strongest positive correlation with
popularity

e Danceability also has a slight positive correlation with

popularity
1 e Acousticness is negatively correlated with both energy
and popularity
0.8 » Valence (positiveness) shows almost no correlation with
popularity = a “happy vibe” alone does not predict a hit
-0.4
Kaggle Python RStudio tidyverse : ggplot_Z
& 0 2 code preprocessing visualizations
1) spotify_numeric <- spotify %>%
+ select(popularity, danceability, energy, loudness, speechiness,
i 0 2 + acousticness, liveness, valence, tempo)
B > corr_matrix <- cor(spotify_numeric, use = "complete.obs”)
> corrplot(corr_matrix,
i + method = "color”,
O 4 _th d ”n l ”n
+ type = "upper”,
+ addCoef.col = "black”,
+ tl.col = "black”,
+ tl.srt = 45)
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Scatterplot Insights

Relationship Between Danceability and Popularity

0.25 0.50 0.75 1.00
Danceability

ggplot (spotify, aes(x = danceability, y = popularity)) +
geom_point(alpha = 9.4, color = "skyblue”) +

geom_smooth(method = "1m”, color = "darkblue”) +
theme_minimal() +
labs(
title = "Relationship Between Danceability and Popularity”,
x = "Danceability”,

y = "Popularity”
)

[i5)

Popularity
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Relationship Between Energy and Popularity

0.25 0.50 0.75 1.00
Energy
ggplot(spotify, aes(x = energy, y = popularity)) +
+ geom_point(alpha = @.4, color = "lightcoral”) +
+ geom_smooth(method = ”"1m”, color = "red”) +
+ theme_minimal() +
+ labs(
+ title = "Relationship Between Energy and Popularity”,
+ x = "Energy”,
+ y = "Popularity”
+ )
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Boxplot comparison

Boxplot Comparison: What Makes a Hit?
How Danceability & Energy differ between Hit and Non-Hit Songs

danceability

Hit

e Hits tend to be more predictable in their energy and danceability

e Danceability does not clearly separate Hits from Non-Hits

energy
1.00 ‘ ‘
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library(tidyverse)

# 1. derive Hit vs. Non-Hit from Popularity (Median-Split)
threshold <- median(song_data$song_popularity, na.rm = TRUE)

song_data <- song_data %-%
mutate(
hit = if_else(song_popularity >= threshold, "Hit", "Non-Hit")
)

# 2. Data in Long-Format for two Boxplots (Danceability & Energy)
song_data_long <- song_data %%
pivot_longer(
cols = c(danceability, energy),
names_to = "feature",
values_to = "value"

)

# 3. draw Boxplot
ggplot(song_data_long, aes(x = hit, y = value, fill = hit)) +
geom_boxplot(alpha = 8.75) +
facet_wrap(~ feature, scales = "free_y") +
labs(
title = "Boxplot Comparison: What Makes a Hit?",
subtitle = "How Danceability & Energy differ between Hit and Non-Hit Songs",
x = "Song Category",
y = "Audio Feature Value"

)+
theme_minimal(base_size = 14) +
theme(legend.position = "none")

e Energy seems more important — Hits are relaibly energetic, while Non-Hits vary more widely



Regression Model

Call: . .. . "
Im(formula = song_popularity ~ danceability * energy, data = song_data) ferm estimate conf.int statistic  df p.value
Residuals: .
“Mn 10 Median | 30 Max Intercept 53.67 [50.35,5698] 31.71 18831 < 001
-b@.562 -12.484 2.716 15.846 46.214
et Danceability -2.65 [-8.22,2.91] -0.93 18831 350
Estimate Std. Error t value Pr(>I1tl)
Int t 53.666 1.693 31.708 Ze-16 ***
energy -16.427 2.582 -6.359 2.08e-10 ***
SANESORIIELGHAENErgy  ESneot asos  GasHS) S s, B Danceability $\times$ Energy 28.29 [19.76,36.82] 6.50 18831 < .001

Signif. codes: @ ‘***> 0.001 ‘**’ 0.01 ‘*’ 0.@5 ‘.’ 9.1 “ ’ 1

Residual standard error: 21.76 on 18831 degrees of freedom
Multiple R-squared: ©.0131, Adjusted R-squared: @.01295
F-statistic: 83.34 on 3 and 18831 DF, p-value: < 2.2e-16

e Danceability alone does not predict popularity

# Load the song data dataset
song_data <- read.csv("song_data.csv")

AN e Energy alone predicts lower popularity

# Fi1t a linear regression model
m3 <- lm(song_popularity ~ danceability * energy, data = song_data)

# Summary of the model ¢ High energy and high pOpLIlarity in
sumary () combination significantly increase popularity

# create table

m3 <- lm(song_popularity ~ danceability * energy, data = song_data)
apa_lm <- apa_print(m3)

tt(apa_lmitable)

View(m3)
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Popularity Trend Analysis  Srresenius
(commercial success)

Energy vs Popularity Danceability vs Popularity

100 100

e Danceability increases more
clearly across popularity
levels

75 75

e Energy shows a weaker,
more stable pattern

Popularity
S
Popularity
S

 Popularity is sufficiently
varied for prediction
analysis

25 25
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library(tidyverse)
library(patchwork)

# Load data
spotify <- read_csv("song_data.csv")

# Clean and standardise values
spotify <- spotify %>%

mutate(
song_popularity = as.numeric(gsub("[”*0-9.]", "", song_popularity)),
danceability = as.numeric(gsub("[~0-9.]", "", danceability)),
danceability = ifelse(danceability > 1, danceability / 100000, danceability),

song_popularity = ifelse(song_popularity > 100,
song_popularity / 20,
) song_popularity)

# Remove invalid rows
spotify_clean <- spotify %>%
filter(
lis.na(song_popularity),
lis.na(energy),
lis.na(danceability),
song_popularity >= 0 & song_popularity <= 100,
) danceability >= 0 & danceability <=1

# Energy scatterplot
p_energy <- ggplot(spotify_clean, aes(energy, song_popularity)) +
geom_point(color = "#1f78b4", alpha = 0.35, size = 1.4) +
geom_smooth(method = "lm", color = "black", se = TRUE) +
theme_minimal() +
labs(title = "Energy vs Popularity",
X = "Energy", y = "Popularity")

# Danceability scatterplot
p_dance <- ggplot(spotify_clean, aes(danceability, song_popularity)) +
geom_point(color = "#33a02c", alpha = 0.35, size = 1.4) +
geom_smooth(method = "lm", color = "black", se = TRUE) +
theme_minimal() +
labs(title = "Danceability vs Popularity",
X = "Danceability", y = "Popularity")

# Combine the two plots
p_energy + p_dance
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How Audio Features Change With
Increasing Popularity

Trend of Danceability Across Popularity Levels

0.67

0.675
0.66

=
o))
al

Average Danceability
>
3
Average Energy
2

0.625
0.63

2.5 5.0 7.5 10.0
Popularity Quantile (Low — High)

Trend of Energy Across Popularity Levels

2.5

5.0 7.5
Popularity Quantile (Low — High)

HOEHSLCHULSE

FRESENLUS

UNIVERSITY OF APPLIED SCIENCES

10.0



Code:

# Create popularity quantiles and group means

spotify_quantile <- spotify_clean %>%
mutate(pop_quantile = ntile(song_popularity, 10)) %>%
group_by(pop_quantile) %>%

summarise(
avg_dance = mean(danceability, na.rm = TRUE),
avg_energy = mean(energy, na.rm = TRUE)
)

# Danceability trend
ggplot(spotify_quantile, aes(pop_quantile, avg_dance)) +
geom_line(color = "#33a02c", linewidth = 1.4) +

geom_point(color = "#33a02c", size = 3) +
theme_minimal() +
labs(
title = "Trend of Danceability Across Popularity Levels",

x = "Popularity Quantile (Low > High)",
y = "Average Danceability"

)

# Energy trend

ggplot(spotify_quantile, aes(pop_quantile, avg_energy)) +
geom_line(color = "#1f78b4", linewidth = 1.4) +
geom_point(color = "#1f78b4", size = 3) +
theme_minimal() +

labs(
title = "Trend of Energy Across Popularity Levels",
X = "Popularity Quantile (Low > High)",
y = "Average Energy"

)
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e songs have enough variation in features for analysis

e Energy & danceability show positive connection with
popularity

e Scatterplots confirm - trend exists, though not very strong

e Boxplots show: more popular songs - usually higher
danceability & energy

e Regression: features matter; only explain small part =
why a song becomes successful

e Trend analysis supports this: danceability increases as
popularity increases, while energy stays stable



- Spotify APl expires every 60
minutes — unstable for large data

- Required track-by-track calls —
unrealistic for thousands of songs

 Genre strongly
influences danceability
+ energy

 Release year affects
popularity (e.g., old
songs rank lower)

» The dataset may overrepresent
popular, which could distort the
relationship between audio
features and commercial
success.

e Missing or uneven genre
distribution (e.g., Pop
dominating the dataset) may
bias the predictive patterns for
danceability and energy

€

Limitations

API Constraints

Data Quality &
Consistency Issues

No Genre or Year
Controls Yet

Limited Predictive
Power of Current

Model

Potential Sampling
I I:Y Bias
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 Kaggle CSV exports
contained inconsistent
fields

e Missing values had to
be cleaned manually

e R?is very low — audio

features explain only a
small part of popularity

e Success isinfluenced

by external factors
(marketing, playlists,
virality)



Where are we now?

models for final
report

{ Ready to refine

J Audio features
explored

\/ First correlations
+ trends identified

‘/ Initial regression
models completed

Early evidence for

\/ danceability &
energy effects

Data cleaned
\/ & processed
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alyses into the final

5.
Strengthen the operational definition
4. of “commercial success”
Evaluate predictive
3. accuracy (R? errors)
2. Combine & extend

datasets

Improve classification
of “hit” vs “non-hit”
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Thanks for your attention!!
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Q&A
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Sources/data utilized = — 7Tesl

e https://www.kaggle.com/datasets/edalrami/19000-spotify-songs?
resource=download

e https://tidyverse.org
e https://otexts.com

e https://www.kaggle.com/code/varunsaikanuri/spotif-data-
visualization



